
Mechanisms for spin supersolidity in S= 1
2 spin-dimer antiferromagnets

J.-D. Picon,1,2 A. F. Albuquerque,1,3 K. P. Schmidt,4 N. Laflorencie,5 M. Troyer,1 and F. Mila2

1Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland
2Institute of Theoretical Physics, EPF Lausanne, 1015 Lausanne, Switzerland

3School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
4Lehrstuhl für Theoretische Physik I, TU Dortmund, Otto-Hahn-Straße 4, D-44221 Dortmund, Germany

5Laboratoire de Physique des Solides, Université Paris-Sud, UMR-8502 CNRS, 91405 Orsay, France
�Received 31 July 2008; revised manuscript received 15 October 2008; published 17 November 2008�

Using perturbative expansions and the contractor renormalization �CORE� algorithm, we obtain effective
hard-core bosonic Hamiltonians describing the low-energy physics of S=1 /2 spin-dimer antiferromagnets
known to display supersolid phases under an applied magnetic field. The resulting effective models are inves-
tigated by means of mean-field analysis and quantum Monte Carlo simulations. A “leapfrog mechanism,”
through means of which extra singlets delocalize in a checkerboard-solid environment via correlated hoppings,
is unveiled that accounts for the supersolid behavior.

DOI: 10.1103/PhysRevB.78.184418 PACS number�s�: 03.75.Nt, 05.30.Jp, 75.10.Jm, 75.40.Mg

I. INTRODUCTION

Concepts and techniques developed within a well estab-
lished research field are often employed in exploring physics
displayed by apparently unrelated systems. Following this
trend, there has been an increased interest in field-induced
Bose-Einstein condensation of magnons in quantum magnets
�for a recent review, see Ref. 1�. Although the analogy is
never complete, this line of research undoubtedly has led to
considerable success in unveiling phenomena in a growing
number of magnetic insulators under applied magnetic field.
The success of this approach suggests that one might be able
to experimentally observe more elusive bosonic behavior in
quantum magnets, such as the phase simultaneously display-
ing diagonal and off-diagonal order known as supersolid.

Supersolidity has attracted enormous interest since the de-
tection of nonclassical rotational inertia in solid helium by
Kim and Chan.2,3 Although the correct interpretation of these
measurements is still hotly debated and there seems to be no
consensus on the possibility of supersolidity in translation-
ally invariant systems,4–7 the occurrence of supersolid phases
for bosonic models on a lattice is a well established fact.
While the simplest model of interacting hard-core bosons on
a square lattice is unstable against phase separation, which
prevents supersolid behavior,8–10 it has been shown that
frustration,11–14 removal of the hard-core constraint,10,15 or
inclusion of generalized couplings in the Hamiltonian16,17

can stabilize supersolidity. Although a more direct imple-
mentation of these models remains elusive, due to the short-
ranged nature of interactions between atoms in optical lat-
tices, one might expect that they are relevant in the context
of quantum magnets under an applied magnetic field.

Indeed, as it was first shown by Ng and Lee18 and further
verified by some of us,19 an S=1 /2 spin-dimer model on the
square lattice with intraplane coupling Ising-type anisotropy
�see Eq. �1� below� has a phase simultaneously displaying
diagonal and off-diagonal order, the equivalent of a super-
solid for spin systems �henceforth dubbed spin supersolid�.
Later spin supersolidity was also shown to occur for S=1
systems on a bilayer20 and on a chain.21 However, the exact

relationship between these spin models and the aforemen-
tioned bosonic lattice models is not well understood. For
instance, one might naively expect that the S=1 /2 spin-
dimer model investigated in Refs. 18 and 19 will map onto a
t-V model for hard-core bosons on a square lattice, which is
known not to display a supersolid phase.9,10 Therefore, in
order to understand the mechanism behind supersolidity in
this model one should analyze the presence of extra terms in
the effective model.

Using a perturbative analysis and the contractor renormal-
ization �CORE� method, we derive effective Hamiltonians
for the S=1 /2 spin-dimer model studied in Refs. 18 and 19.
A mean-field �MF� analysis of the resulting generalized hard-
core bosonic Hamiltonian leads to a minimal model capable
of accounting for supersolid behavior, which is then studied
by means of quantum Monte Carlo �QMC�.

II. MODEL

We analyze the S=1 /2 spin-dimer Hamiltonian analyzed
by Ng and Lee18 and some of us,19 which reads

H = J��
i

S� i,1 · S� i,2 − h �
i,�=1,2

Si,�
z

+ J �
�i,j�,�=1,2

�Si,�
x Sj,�

x + Si,�
y Sj,�

y + �Si,�
z Sj,�

z � . �1�

S� i,� is an S=1 /2 operator attached to the site i of the layer �
�see Fig. 1�. J� couples spins in different layers and is con-
sidered to be the essential coupling, being responsible for the
system’s strong dimerized character �we set J�=1 through-
out the rest of the paper�. Spins in the same layer interact via
the coupling J and � is an Ising-type anisotropy; finally, the
magnetic field h is applied along the easy axis. We will
mainly focus on the set of parameters considered in Refs. 18
and 19, J /J�=0.29 and �=3.3, leading to an extended su-
persolid phase as evident from the QMC results for the spin
stiffness �s and static structure factor S�� ,�� obtained by
Laflorencie and Mila19 and reproduced in Fig. 2.
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Our goal is to show that we can understand the emergence
of SS for the spin model �Eq. �1�� in terms of simple micro-
scopic mechanisms. In achieving this, we derive effective
bosonic models for Eq. �1� by means of two different proce-
dures: high-order perturbative series expansions and the con-
tractor renormalization �CORE� algorithm. We are going to
show that correlated hoppings for singlets �holes� with am-
plitudes s̃1 �next-nearest-neighbor �NNN� hopping which oc-
curs only if at least one of the other sites in the same
plaquette is occupied� and s̃2 �assisted next-nearest-neighbor
hopping occurring only when the site in between is occu-
pied�, depicted in Figs. 3�a� and 3�b�, respectively, are cru-
cial in accounting for SS behavior for the model of Eq. �1�. It
is easy to see �Fig. 3�c�� that these processes prevent phase
separation10 in the hard-core bosonic model on the square

lattice �t-V model� by allowing extra singlets �holes� to de-
localize in a checkerboard-solid �CBS� environment by
“leapfrogging” on the other sublattice and forming a conden-
sate. It is useful to define the quantity we call “leapfrog
ratio,”

� =
�2�s̃1� + �s̃2��

�t̃1�
, �2�

where t̃1 is the nearest-neighbor �NN� hopping amplitude for
holes. It was shown by Sengupta et al.10 that the energetic
gain in the domain wall formation behind phase separation in
the t-V model is ct̃1, where c lies in the interval �1, 2�. There-
fore, for a system of hard-core bosons on the square lattice,
the energetic gain associated to the correlated hoppings de-
picted in Fig. 3 must be larger than ct̃1, implying that the
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FIG. 1. �Color online� �a� The bilayer spin system investigated
in this paper, described by the Hamiltonian of Eq. �1�. The strong
coupling J�, represented by thick vertical lines, accounts for the
system’s strong dimer character. Application of a magnetic field
along the z direction promotes dimers from a singlet ��s�, vertical
pairs of open circles� to a triplet ��t1�, pairs of filled circles� state
and controls the density of emergent bosons as depicted in �b�.
Solid �and supersolid� phases might be stabilized for field values in
the range between the lower-critical field hc1, where the bottom of
the triplet band �represented in the inset and separated from the
singlet state by a zero-field gap �0 and with width D� and the singlet
state become degenerate, and the upper-critical field hc2 where the
system becomes fully polarized. In-plane coupling J leads to inter-
actions and hopping amplitudes for emergent bosons, the anisotropy
� being necessary to stabilize a checkerboard solid represented in
the upper panel.
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FIG. 2. �Color online� QMC results for the spin-dimer model
�Eq. �1��. Simulations were performed on a 16�16�2 lattice with
�=32, for J /J�=0.29. �a� Spin stiffness �s �open squares� and static
structure factor S�� ,�� �filled circles� �Ref. 22�. �b� Normalized
magnetization per site mz /msat

z �open diamonds�, equivalent to par-
ticle density in the bosonic language. Different phases are stabilized
as a function of the applied magnetic field, namely: a superfluid
�SF� phase with finite �s and vanishing structure factor, an extended
supersolid �SS� in which both �s and S�� ,�� are finite and a check-
erboard solid �CBS�. Error bars are much smaller than the depicted
symbols �adapted from Ref. 19�.

b)

a) c)

~

~

s2

s1

FIG. 3. �Color online� �a� NNN correlated hopping with ampli-
tude s̃1 and �b� third-neighbor correlated hopping with amplitude s̃2:
singlets �holes� hop in between red and light-blue sites only if the
black-filled circles are occupied by holes �in �a�, at least one of the
sites must be occupied; if both are, the process occurs with ampli-
tude 2s̃1�. This “leapfrog mechanism” allows for extra holes to de-
localize in a checkerboard ordered environment, as illustrated in �c�,
and to condense, giving rise to supersolid behavior.
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condition �	c /4 must be obeyed, for SS behavior to
emerge.

III. PERTURBATIVE EXPANSIONS

Following the work of Totsuka23 and Mila,24 we restrict
ourselves to the limit where J� is the main energy scale and
the system consists of weakly coupled dimers. The applica-
tion of a magnetic field lowers the energy of one of the triplet
bands and at the critical field hc1 the singlet state �s� �holes�
and the bottom of the triplet �t1� �bosons� band become de-
generate �see Fig. 1�b��. By expanding the Hamiltonian Eq.
�1� in terms of the small parameter J /J� we can thus obtain
an effective hard-core bosonic model. Within first-order in
J /J�, the only effective couplings in the model obtained in
this way are nearest-neighbor hopping amplitude t1 and re-
pulsion V1 for the emergent bosons �triplets�.24 However,
since this so-called t-V model �equivalent to Eq. �3� below if
we set s1,2

P2 =0� is known to display no SS phase,8 higher-
order effective couplings should be taken into account and
we proceed to their derivation.

A. Second-order expansion

We extend the perturbative analysis of Mila24 to second
order in J /J�, obtaining the following effective Hamiltonian:

Heff
P2 = − 
P2�

i

ni + �
�i,j�

�t1
P2�bi

†bj + H.c.� + V1
P2ninj�

+ s1,2
P2 �

�i,j,k�
�bi

†�1 − nj�bk + H.c.� , �3�

with effective couplings �we set J�=1�


P2 = 1 +
J2�2 + �2�

4
+ h ,

t1
P2 = J/2, s1,2

P2 = − J2/16,

V1
P2 =

J�

2
−

J2�2 + �2�
8

. �4�

In Eq. �3�, ni=bi
†bi= 	0,1
 is the occupation number for hard-

core bosons ��t1� triplets� at the site i on the square lattice
formed by the spin-dimers. �i , j� denotes NN sites on this
lattice and �i , j ,k� is such that j is a common nearest neigh-
bor for the second- or third-neighbor sites i and k.25 The
physical processes at play become more evident after apply-

ing a particle-hole transformation, �1−ni�→ ñi and b†→ b̃, to
Eq. �3�:

H̃eff
P2 = 
̃P2�

i

ñi + �
�i,j�

�t1
P2�b̃i

†b̃j + H.c.� + V1
P2ñiñj�

+ s1,2
P2 �

�i,j,k�
�b̃i

†ñjb̃k + H.c.� . �5�

We have ignored constant terms and 
̃P2=
P2+2V1
P2; ñi

= b̃i
†b̃i is now the singlet �holes� occupation number. In addi-

tion to the first-order couplings t1
P2 �NN hopping amplitude�

and V1
P2 �NN repulsion� the second-order effective Hamil-

tonian also contains a correlated hopping term with ampli-
tude s1,2

P2 �see Figs. 3�a� and 3�b��.25 Correlated hoppings
have been shown to stabilize supersolidity17 by allowing par-
ticles to delocalize in a CBS ordered background. However,
the second-order amplitude for correlated hoppings is too
small10,17 to prevent phase separation: the “leapfrog ratio” of
Eq. �2�, �P2=3J /8�0.12 for J /J�=0.29 is too small and
cannot account for supersolidity. Therefore we extend our
analysis and include higher-order corrections to the param-
eters t1

P2, V1
P2, and s1,2

P2 in Eq. �5� with the help of perturbative
continuous unitary transformations �PCUTs�.

B. PCUTs

The method of continuous unitary transformations �CUTs�
�Refs. 26–29� in its perturbative variant30–33 and quasiparti-
cle conserving form is an efficient tool to derive effective
low-energy models for coupled quantum dimer networks in a
magnetic field up to high order in perturbation.34,35 To this
end, the original spin Hamiltonian Eq. �1� is rewritten in
terms of rung triplet operators t�

�†� with �= 	�1,0
. This
Hamiltonian does not conserve the number of triplets Q
=�i,�=�1,0t�

† t� in the system. The basic idea of quasiparticle
conserving CUTs is to transform H into Heff such that
�Heff ,Q�=0; i.e., the number of quasiparticles �triplons, in
the present case� is a conserved quantity. Since the total Stot

z

is also a conserved quantity, the magnetic field term does not
change under the unitary transformation. For the case of
coupled dimers in a magnetic field, one can therefore restrict
to terms in Heff consisting solely of triplet operators t1

�†� in
order to describe the low-energy physics.

In general, a continuous parameter l is introduced such
that l=0 refers to the initially given system H and l=� cor-
responds to the final effective system Heff. Let U be the
unitary transformation which diagonalizes the Hamiltonian
H and H�l�=U†�l�HU�l�. Then this unitary transformation is
equivalent to performing an infinite sequence of unitary
transforms e−
�l�dl with the anti-Hermitian generator


�l� = − U†�l��lU�l� . �6�

The derivation with respect to l results in the so-called flow
equation

�lH�l� = �
�l�,H�l�� , �7�

which defines the change of the Hamiltonian during the flow.
The properties of the effective Hamiltonian depend strongly
on the choice of the generator 
. Quasiparticle-conserving
CUTs chooses 
 such that the Hamiltonian H0 maps onto an
effective Hamiltonian which conserves the number of
quasiparticles.30–33

In the following we consider the limit of weakly coupled
rung dimers; i.e., we set J�=1 and treat J and � as small
expansion parameters. Using a series expansion ansatz for 

and H in Eq. �7�, one can derive the effective quasiparticle
conserving Hamiltonian up to high order in
perturbation.30,33,36 The results are obtained in the thermody-
namic limit and in second quantization.

We stress again that the total Stot
z is a conserved quantity.
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The magnetic field term has not changed under the unitary
transformation and the low-energy physics is solely influ-
enced by the local singlet �s� and the triplet �t1� polarized
parallel to the magnetic field �as discussed before�. Identify-
ing �s� with an empty site and �t1� with the presence of a
hard-core boson �as before�, we can deduce the effective
Hamiltonian in this language by calculating matrix elements
on finite clusters.36

We have extended the derivation of the effective param-
eters appearing in Eq. �5�, now relabeled as t1

P6, V1
P6, and s2

P6,
to sixth order in J /J� and have additionally calculated the
amplitude t2

P6 for uncorrelated next-nearest-neighbor hop-
ping. Explicit formulas are given in Appendix A and depen-
dences on J /J� are shown in Fig. 4 for �=3.3. Comparison
between t1

P6 and results obtained from CORE �see Fig. 6 and
discussion below� suggests that our perturbative analysis re-
mains valid up to J /J��0.15.

By applying a particle-hole transformation it is possible to
show that the condition t2

P6=−2s2
P6, approximately fulfilled

by our results �Fig. 4�, implies a vanishing amplitude for
uncorrelated next-nearest-neighbor hopping for holes �sin-
glets� and therefore the magnitude of s2

P6 is the relevant ki-
netic scale for supersolidity �a similar situation happens for
the effective Hamiltonian derived from CORE; see Sec.
V A�. As we mentioned before, supersolid behavior is ex-
pected to occur for large enough values of s2

P6 / t1
P6.10,17 How-

ever, our results for this ratio, shown in the inset of Fig. 4,
are clearly too small for preventing domain-wall
formation,10,17 and therefore one does not expect to repro-
duce the extended SS phase observed for the original spin
model, Eq. �1�. Consequently, either our idea that the model
can be described by only taking into account �s� and �t1� is
wrong, or we must go beyond a perturbative analysis. Since
according to Ng and Lee18 contributions from the other two
triplets states �t0� and �t−1�, if nonzero, are negligible close to
half-filling, we therefore resort to a nonperturbative approach
to our problem, namely the CORE algorithm.

IV. CONTRACTOR RENORMALIZATION

The CORE method was introduced by Morningstar and
Weinstein37,38 and has been recently39 applied to the study of
the spin-dimer Hamiltonian described by Eq. �1�. We extend
these results by considering the next range in the effective
couplings and analyzing in more detail the resulting effective
bosonic model.

A. Procedure

The basic idea behind CORE �for comprehensive ac-
counts the reader is referred to Refs. 40 and 41� is to project
out high energy degrees of freedom and to derive an effec-
tive Hamiltonian describing the low-energy physics of the
original model. Usually this is done by first decomposing the
lattice on which the original model is defined into elementary
blocks and diagonalizing the Hamiltonian on a single block.
After choosing a suitable number of low-energy block states,
the model is subsequently diagonalized on a cluster consist-
ing of a few elementary blocks and the lowest energy cluster
states are projected onto the restricted basis formed by the
tensor products of the retained block states. An effective
Hamiltonian is then obtained by imposing the constraint that
the low-energy spectrum of the full problem is exactly repro-
duced and by subtracting shorter-range contributions ob-
tained from previous steps involving lesser blocks. The va-
lidity of the procedure can be checked by either analyzing
the magnitude of long-range effective couplings �large values
associated to these signal the inadequacy of the chosen re-
stricted set of degrees of freedom in accounting for the sys-
tem’s low-energy behavior� or, perhaps more accurately, by
keeping track of the weight of the reduced density matrix
associated to a single block.39,42

For the spin-dimer model considered here, Eq. �1�, large
values for the interplane coupling J� imply that the natural
choice when applying CORE is to consider the dimers as the
elementary blocks: dimer singlet states, �s�, corresponding to
an unoccupied site in the effective model living on the square
lattice, and an emergent boson created by promoting one
singlet to an Sz=1 triplet state, �t1�, are the retained block
states. The adequacy of this reduced set of degrees of free-
dom in describing the Hamiltonian of Eq. �1� in the regime
known18,19 to display supersolid behavior was verified by
Abendschein and Capponi39 and is confirmed in the present
work.

Our results are obtained from the analysis of the clusters
depicted in Fig. 5. They are labeled according to the maxi-
mum range for the effective couplings: range-1 are the re-
sults obtained from the analysis of the cluster containing two
dimers shown in Fig. 5�a�, range-21/2 denote the ones from
the cluster with four dimers arranged as a plaquette �Fig.
5�b�� and range-2 results from the three-dimer cluster shown
in Fig. 5�c�. We gauge the validity of the mapping onto a
system of hard-core bosons by analyzing corrections to the
NN hopping amplitude t1 �for particles� obtained from
range-21/2 and range-2 CORE calculations: whenever the
sum of these contributions exceeds the value obtained from
range-1 CORE we assume that a valid mapping is not
obtained. While the criteria used by Abendschein and
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FIG. 4. �Color online� �=3.3. Effective couplings obtained
from the PCUTs procedure described in the main text: nearest-
neighbor hopping amplitude t1

P6 �solid dark line� and interaction V1
P6

�dashed dark line� and amplitudes for next-nearest-neighbor uncor-
related �t2

P6, solid light line� and correlated �s2
P6, dashed light line�

hoppings, as a function of J /J�. The inset shows the dependence of
the ratio s2

P6 / t1
P6 on J /J�.
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Capponi39 is probably more accurate, our results agree quali-
tatively with theirs and suffice for our analysis. More impor-
tantly, for the parameters ��=3.3 and J /J�=0.29, vertical
dashed line in Fig. 6� leading to supersolidity previously
considered in the literature18,19 both criteria validate the map-
ping onto the effective bosonic model.

The effective hard-core bosonic Hamiltonian obtained
from the CORE calculation is, after applying a particle-hole

transformation �1−ni�→ ñi and b†→ b̃, given by

H̃eff
C = �

i

	− 
̃Cñi + �Ṽi + W̃i� + �T̃i + S̃i + R̃i�
 , �8�

where 
̃C is the chemical potential for the holes �singlets�. Ṽ
comprises two-body interactions and W̃ three- and four-body

interactions; T̃, S̃, and R̃ are the kinetic contributions: direct
and correlated hopping terms. Full expressions for each of
these terms are given in Appendix B.

B. Comparison with perturbative expansion

Figure 6 shows our results for the effective nearest-
neighbor hopping amplitude t1 �for particles� obtained from

CORE �range-1, -21/2, and -2� and from PCUTs for �=3.3
and as a function of J /J�. As expected, the various ranges
CORE results agree with the ones obtained from PCUTs in
the limit of small J /J�, where both results are essentially
exact. However, for J /J��0.15 higher-order terms in the
perturbative expansion start to dominate, invalidating the
PCUTs analysis. Crucially, for the value J /J�=0.29 consid-
ered in Refs. 18 and 19 �highlighted by the vertical dashed
line in Fig. 6�, the PCUTs expansion is clearly invalid, while
longer-range CORE results are essentially converged.

These results can be understood if we remark that any
perturbative expansion about the weakly coupled dimer limit
is only valid as long as one stays in the zero-field rung-
singlet phase, with a finite gap to all three triplet modes.
However, it has been shown18,19 that for �=3.3 and J /J�

=0.29 the zero-field ground state of the spin-dimer model
�Eq. �1�� displays long-range Néel order implying the exis-
tence of a quantum critical point Jc�h=0� /J��0.29 �evident
from poles in the Padé approximants for the perturbation
series� beyond which our perturbative expansions become
meaningless. On the other hand, although CORE relies on a
strong dimerized character �so that dimer singlets and triplets
are the relevant local degrees of freedom�, it does not assume
any particular ordering and therefore remains valid across the
critical regime.

V. MECHANISM FOR SPIN SUPERSOLIDITY

Numerical values obtained from CORE for all effective
couplings �up to range-2� appearing in Eqs. �8� and �B1�–
�B5� are shown in Table I for the parameters �=3.3, J /J�

=0.29 used in the original QMC simulations.18,19 We use the
MF approach discussed in Appendix C and calculate the de-
pendence of the condensate density �0 and CBS order param-
eter �see Eqs. �C4� and �C5�� on magnetic field h. The results
are shown in Fig. 7�a�. The semiquantitative agreement be-
tween estimates for the location of the quantum critical
points obtained from the present analysis and from the QMC
simulations for the original model �Eq. �1�� �shown in Fig. 2�
is remarkable if we have in mind that only contributions of

a) Range−1 c) Range−21/2b) Range−2

FIG. 5. Clusters used in the CORE derivation of the effective
model, labeled according to the longest range effective couplings on
the square lattice. In this convention, range-1 interactions are ob-
tained from the analysis of the cluster consisting of two dimers �a�,
range-21/2 from the cluster with four dimers forming a square
plaquette �b� and range-2 by considering three dimers along a line
�c�.
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CORE: up to range-2

� �� �

PCUT

∆ = 3.3

FIG. 6. �Color online� Comparison between CORE �range-1,
-21/2 and -2� and PCUTs results for the nearest-neighbor hopping
amplitude t1 �for particles� in the effective bosonic model as a
function of J /J� for �=3.3, as in Refs. 18 and 19. The value
J /J�=0.29 is highlighted by the vertical dashed line. The vertical
solid line indicates the point where longer-range �21/2 and 2� cor-
rections to t1 become larger than the range-1 contribution, signaling
the breakdown of the CORE mapping �see main text�.

TABLE I. Couplings in the effective Hamiltonian obtained from
CORE �up to range-2, Eqs. �8� and �B1�–�B5�� for �=3.3 and
J /J�=0.29. Also shown is the reduced NN hopping amplitude t̃1

min,
defined by Eq. �10�. Units are set by J�=1.


̃C=2.911009−h

Ṽ1
C 0.336874 Ṽ2

C −0.008851

Ṽ3
C −0.011122 W̃1

C 0.009035

W̃2
C −0.002257 W̃3

C −0.064354

t̃1
C 0.145 t̃2

C 0

s̃1
C −0.017190 s̃2

C −0.021471

s̃3
C −0.009378 s̃4

C −0.000678

s̃5
C −0.005367 s̃6

C −0.009977

r̃1
C 0.000988 r̃2

C −0.008850

t̃1
min=0.130255
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up to range-2 have been considered in the CORE calculation.
However, MF approaches are known to overestimate super-
solid behavior9,10,17 and the effects of quantum fluctuations
must be carefully analyzed.

Unfortunately, the effective Hamiltonian obtained from
CORE, Eqs. �8� and �B1�–�B5�, is complex and poses great
challenges for more unbiased analysis. We therefore use the
aforementioned MF procedure in gauging the relative impor-
tance of each term, with a twofold purpose: �a� identifying
the dominant mechanism accounting for supersolidity in the
spin-dimer model of Eq. �1� and �b� obtaining a simpler ef-
fective model amenable to QMC simulations �see below� in
order to check whether the conjectured mechanisms survive
after quantum fluctuations are taken into account.

A. Minimal Hamiltonian

In deciding on a minimal model we should obviously take
into account the magnitudes associated with each term in
Eqs. �8� and �B1�–�B5�: we start by neglecting all effective
couplings smaller than 0.1t̃1

C, where t̃1
C is the NN hopping for

holes �singlets�. Furthermore, since SS takes place only close
to half-filling, we can also neglect the four-body term with

coupling W̃3
C �see Eq. �B2��. The resulting model is identical

to the second-order effective Hamiltonian �Eq. �5��,25 but
with strongly renormalized couplings. In particular, the cou-
plings associated to the correlated hoppings s̃1

C and s̃2
C �see

Figs. 3�a� and 3�b�� are considerably larger than predicted by
the perturbative analysis,25 as required for SS to emerge.
However, the MF analysis of the resulting model shows that
the extra kinetic energy associated to the large effective am-
plitudes for correlated hoppings requires the addition of the

attractive two-body interactions Ṽ2
C and Ṽ3

C �see Table I� to
stabilize a CBS plateau �cf. Figs. 10�a� and 10�b��. These
considerations lead to the minimal model:

H̃min
C = − 
̃C�

i

ñi + �
�i,j�

�t̃1
C�b̃i

†b̃j + H.c.� + Ṽ1
Cñiñj�

+ �
��i,k��

	s̃1
C�b̃i

†�ñj1 + ñj2�b̃k + H.c.� + Ṽ2
Cñiñk


+ �
���i,l���

�s̃2
C�b̃i

†ñjb̃l + H.c.� + Ṽ3
Cñiñl� . �9�

ñi= b̃i
†b̃i is the occupation number for holes; �i , j�, ��i ,k�� and

���i , l��� denote, respectively, NN, NNN, and third-NN sites
on the square lattice. The correlated hopping term with am-
plitude s̃1

C �s̃2
C� is depicted in Fig. 3�a� �Fig. 3�b��: a hole hops

between two NNN �third-NN� sites i and k �l� only if at least
one of their common NN sites j1, j2 �j� is occupied by a
hole.44

Mean-field results �not shown� for the condensate density
�0 and the CBS order parameter S�� ,�� for the minimal
model of Eq. �9�, with effective couplings given in Table I
�for �=3.3 and J /J�=0.29�, semiquantitatively reproduce
the QMC phase diagram �phase borders in Fig. 2� for the
original spin-dimer model, Eq. �1�. Unfortunately, this pic-
ture is too simplistic and results from QMC simulations �not
shown� for this minimal model show that the CBS plateau is
destroyed by quantum fluctuations, seemingly invalidating
our analysis. However, the QMC results for S�� ,�� display a
rather pronounced peak, indicating that our minimal model is
close to a borderline where the solid phase appears: this is
confirmed by the existence of an extended CBS plateau �con-
comitantly with a SS phase� in the QMC results obtained by
considering slightly smaller values for the NN hopping am-
plitude t̃1

C,45 suggesting that terms neglected in the full effec-
tive model �Eqs. �8� and �B1�–�B5��, although relatively
small, play an important role.

A closer examination of the terms in the full effective
CORE Hamiltonian �Eqs. �8� and �B1�–�B5�� neglected in
deriving our minimal model �Eq. �9�� shows that the NN
correlated hoppings with amplitudes s̃3

C and s̃5
C �see Eq. �B4�

and Table I� have exactly the effect of decreasing the holes’
�singlets’� kinetic energy that may stabilize the CBS phase.
However, the fact that t̃1

C and s̃3
C, s̃5

C have opposite signs also
implies that their inclusion in Eq. �9� has the undesired effect
that the resulting minimal model would suffer from the sign
problem. In order to circumvent this problem and be able to
perform QMC simulations, we incorporate s̃3

C and s̃5
C in an

effective way: we notice that in a perfectly ordered CBS
background these extra hoppings effectively reduce the NN
hopping amplitude t̃1

C to the value we denote t̃1
min given by �to

leading order�

t̃1
min = t̃1

C − ��s̃3
C� + �s̃5

C�� . �10�

MF results �Fig. 7�b�� for the new minimal effective model
obtained by the substitution t̃1

C→ t̃1
min in Eq. �9� suggests that

the dominant physical processes are correctly taken into ac-
count, at least close to half-filling, as we can conclude from
the excellent agreement with the results for the full effective
CORE model �Fig. 7�a��.46 Furthermore, the SS region vis-
ible in Fig. 7�b� is expected to survive quantum fluctuations,
for a sizable leapfrog ratio ��t1

min��0.43 is obtained for �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
� �
�
�
�
�

�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�� �

�
�
�
��
�
�
��
�
�
� �
�
� �
�
�
� �
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �� ��
�
�
�
�
�
�
�
�
�
�
�� �� ��
�
�
�
�
�
�
�
�
�
�
�� ��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
� �
�
�
�
�
�
�
�
�

�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
��
�
�
���
�
�
�� � �
��
�� ��
�
�
��
��
�
�
�� �
� ��
��
�
�
�
�
�
�
�

�
�

�
�
�
�

0

0.5

1

1.5

2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
� �
�
�

�
�
�
�

�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
� ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
�
� �
��
�
�
��
�
� �
�
�
� ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �� �� ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��� ��
�
�
�
�
�
�
�
�
�
�
� �� � �
�
�
�
�
�
�
�

�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
� �
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
� �

�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�� ��
�
�
�
�
��
�
�
�
�
�
�
� �
���
�
�
�� ��
��
�
�
�� ��
�
�
��
�� �
� ��
�

�
�
�
�

� �

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
h

0

0.5

1

1.5

2

(a)

(b)

SF SS CBS SF

SFCBS

J / J⊥ = 0.29

SSSF

∆ = 3.3

Full Effective Model

Min. Effective Model

S (π, π )

�
�
�
�

8 × ρ
0

�
�
�
�

FIG. 7. �Color online� �=3.3, J /J�=0.29. Mean-field results
for the CBS structure factor S�� ,�� �filled circles� and condensate
density �Ref. 43� �0 �open squares� as a function of the magnetic
field h for: �a� the full range-2 CORE effective Hamiltonian, Eqs.
�8� and �B1�–�B5�, and �b� the minimal model of Eq. �9�, with NN
hopping amplitude given by Eq. �10�. Values for the effective cou-
plings are shown in Table I and successive phases are labeled as
condensate, supersolid �SS�, and checkerboard solid �CBS�.
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=3.3 and J /J�=0.29, something confirmed by our QMC
simulations below.

B. Quantum Monte Carlo simulations

We have performed QMC simulations, using an extended
version47 of the ALPS libraries’ implementation48,49 of the
stochastic series expansion �SSE� algorithm.50,51 We consider
the minimal effective model of Eq. �9� with NN hopping
amplitude t̃1

min given by Eq. �10�.44 We evaluate the super-
fluid stiffness �s,

43 obtained in terms of the winding numbers
wx and wy,

�s =
1

2�L2 �wx
2 + wy

2� , �11�

where � is the inverse temperature and L is the system size,
and the CBS order parameter

S��,�� =
1

L2 ��
r�i,r�j

�− 1�r�i−r�jñr�i
ñr�j

� , �12�

as a function of the magnetic field h. Since we are interested
in assessing ground-state properties, and the main kinetic
energy scale in the minimal model Eq. �9� is t̃1

min /J��0.13,
we set the temperature to T=1 /20L� t̃1

min /2L. It is important
to remark that these temperatures are considerably lower
than those considered by Ng and Lee,18 who assumed that
J /J�=0.29 was the relevant energy scale, and this might
explain the round shape observed in some of their curves.

QMC results for �s and S�� ,�� for the minimal model of
Eq. �9� with NN hopping amplitude given by Eq. �10�, using
the effective couplings appearing in Table I ��=3.3 and
J /J�=0.29�, are shown in Fig. 8. The overall agreement with
QMC results for the original spin-dimer model �Eq. �1��,18,19

shown in Fig. 2, is good and we can conclude that the mini-
mal model of Eqs. �9� and �10� indeed accurately describes
the low-energy physics of the original model and, more im-
portantly, that the “leapfrog mechanism” presented in Sec. II
is at least partially responsible for spin-supersolid behavior.

Although the just presented results show that the essential
ingredients for spin supersolidity have been identified, it is
clear that quantitative agreement is not achieved. Specifi-
cally, the extent of the SS phase is considerably smaller in
Fig. 8 than in Fig. 2; reversely, the CBS phase in the former
is about twice as large than in the latter. In trying to under-
stand this mismatch it is important to keep in mind that su-
persolidity emerges in this model as the result of a delicate
balance between kinetic and interaction terms. This is evi-
dent in the MF analysis discussed in Sec. V A, which sug-
gests that the effective model obtained from CORE is close
to a borderline and that small variations in the effective cou-
plings can have drastic effects. For instance, we have shown
that the minimal model �Eq. �9��, with effective couplings
shown in Table I, does not display a CBS phase; however, by
replacing t̃1

C→ t̃1
min �Eq. �10�� we obtain a CBS phase twice as

large as expected.
Therefore, and since the sign problem precludes us from

performing QMC simulations for the full effective Hamil-
tonian �Eqs. �8� and �B1�–�B5��, we conjecture that terms
ignored in obtaining the minimal model �Eqs. �9� and �10��,
even with small couplings, must be included in order to bet-
ter reproduce the results for the original model, shown in
Fig. 2. Additionally, the NN correlated hoppings with ampli-
tudes s̃3

C and s̃5
C appear to favor SS and the fact that we

include only their effects in reducing t̃1
C �Eq. �10�� might be

responsible for the reduced SS phase in Fig. 8.46 Finally, it is
not possible to exclude the possibility that longer-range ef-
fective interactions and/or neglected triplet excitations ��t0�,
�t−1�� may be required for obtaining quantitative agreement.

C. Extent of the supersolid phase

We have extended our MF analysis to the full effective
model �Eqs. �8� and �B1�–�B5�� by varying the parameters �
and J /J�, as a function of the magnetic field h. Results are
shown in Fig. 9. Gray shaded areas represent values of � and
J /J� for which no SS phase is stabilized within MF for all
values of h and only a superfluid and/or CBS phases are
obtained. However, SS does appear over an extended region
in the parameter space within MF. Since it is well known that
MF tends to overestimate supersolidity, we have also ana-
lyzed the “leapfrog ratio” ��t1

min� �see Eq. �2�� throughout the
parameter space. As discussed in Sec. II, the condition
��t1

min�	c /4, with c� �1,2�, must be satisfied for preventing
phase separation and stabilizing a SS. Regions for which this
condition is fulfilled are indicated in Fig. 9: we can see that
the region where the SS phase is likely to occur is much
smaller than expected from the MF analysis and, in particu-
lar, no SS is expected within the perturbative limit.

VI. CONCLUSIONS AND OUTLOOK

Summarizing, we have obtained effective models describ-
ing the low-energy physics of a spin-dimer model �Eq. �1��
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FIG. 8. �Color online� �=3.3, J /J�=0.29. QMC results for the
minimal effective model obtained from CORE, Eq. �9�, considering
the NN hopping amplitude t̃1

min from Eq. �10� �values for the cou-
plings are given in Table I�, for lattice sizes L=8, 12, 16 and 24.
Error bars are much smaller than the depicted symbols. �a� Singlet
density, �b� CBS order parameter S�� ,�� �Ref. 22� and �c� super-
fluid stiffness �s �Ref. 43�. The temperature is set to T=1 /20L
� t̃1

min /2L �see main text�. Successive phases are labeled as super-
fluid �SF�, supersolid �SS�, and checkerboard solid �CBS�.
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known to exhibit spin-supersolid behavior18,19 with the help
of perturbative expansions and of the CORE algorithm.
While the perturbative analysis, relying on the assumption of
a disordered ground state with gapped excitations at zero
field, does not reproduce the extended supersolid phase ob-
served in the original model �Fig. 2�, CORE does not assume
any particular ordering in the system and is shown to repro-
duce the main features obtained from more computationally
demanding approaches, even when a simple mean-field pro-
cedure is applied to the obtained effective model.

Furthermore, we identify the mechanism at play behind
spin supersolidity and we show that the spin-supersolid
phase exhibited by the S=1 /2 spin-dimer model of Eq. �1�
can be simply understood in terms of the “leapfrog mecha-
nism” illustrated in Fig. 3. Basically, a sizable amplitude for
correlated hoppings allow extra holes �singlets� to delocalize
on the other sublattice of a checkerboard solid, preventing
phase separation and leading to supersolid behavior.

More generally speaking, we are able to describe the
physics behind complex phenomena in a simple way by de-
riving effective models with only a few terms and rather
local couplings. The essential physical ingredients can be
identified even in a low-order perturbative analysis, although
more sophisticated approaches, such as PCUTs and CORE,
may be required in obtaining the effective couplings. We
highlight that both PCUTs and CORE are immune to the sign
problem and can therefore be applied to frustrated and fer-
mionic systems, something which opens interesting research
possibilities.
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APPENDIX A: PCUTS SIXTH-ORDER EFFECTIVE
COUPLINGS

The effective couplings obtained from the PCUTs analysis
discussed in Sec. III B are
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�A1�

APPENDIX B: EFFECTIVE COUPLINGS
FROM CORE

The explicit expressions for each term in the effective
Hamiltonian obtained from CORE, Eq. �8�, are given here

�in the expressions below ñi= b̃i
†b̃i is the occupation number

for holes and x̂ , ŷ are unity vectors for the square lattice;
constant terms arising from applying a particle-hole transfor-
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Σ > 0.25 Σ > 0.5

FIG. 9. �Color online� Successive phases stabilized for increas-
ing magnetic field h in the parameter space of the spin-dimer model
of Eq. �1�, as obtained from a mean-field analysis of the full CORE
Hamiltonian, Eqs. �8� and �B1�–�B5�. Gray shaded areas correspond
to parameters for which no supersolid phase is found and in the
region marked as “invalid mapping” the CORE expansion is invalid
�see Sec. IV A�. In the remaining area a supersolid phase is ob-
tained within the mean-field approach. The colorful regions indicate
parameters for which the singlet “leapfrog ratio” �Eq. �2�� is larger
than the threshold value ��t̃1

min�	c /4 �with c� �1,2��, as required
for SS phases to appear. The cross highlights parameters �=3.3 and
J /J�=0.29 from Refs. 18 and 19. Phases are labeled as Mott insu-
lator �M0, empty, and M1, full�, superfluid �SF�, supersolid �SS�,
and checkerboard solid �CBS�.
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mation to the bare CORE effective Hamiltonian are ignored�.
Ṽ comprises two-body interactions

Ṽi = Ṽ1
C�ñiñi+x̂ + ñiñi+ŷ� + Ṽ2

C�ñiñi+x̂+ŷ + ñiñi+x̂−ŷ�

+ Ṽ3
C�ñiñi+2x̂ + ñiñi+2ŷ� , �B1�

and W̃ three- and four-body interactions

W̃i = W̃1
C�ñiñi+x̂ñi+2x̂ + ñiñi+ŷñi+2ŷ� + W̃2

C�ñiñi+x̂�ñi+ŷ + ñi+x̂+ŷ

+ ñi−ŷ + ñi+x̂−ŷ�� + W̃3
C�ñiñi+x̂ñi+ŷñi+x̂+ŷ� . �B2�

The effective single-boson hopping terms in Eq. �8� are

T̃i = t̃1
C�b̃i

†b̃i+x̂ + b̃i
†b̃i+ŷ + H.c.� + t̃2

C�b̃i
†b̃i+x̂+ŷ + b̃i

†b̃i+x̂−ŷ + H.c.� .

�B3�

Correlated hopping terms are

S̃i = s̃1
C�b̃i

†�ñi+x̂ + ñi+ŷ�b̃i+x̂+ŷ + b̃i
†�ñi+x̂ + ñi−ŷ�b̃i+x̂−ŷ + H.c.�

+ s̃2
C�b̃i

†ñi+x̂b̃i+2x̂ + b̃i
†ñi+ŷb̃i+2ŷ + H.c.� + s̃3

C�b̃i
†b̃i+x̂�ñi+ŷ

+ ñi+x̂+ŷ + ñi−ŷ + ñi+x̂−ŷ� + b̃i
†b̃i+ŷ�ñi+x̂ + ñi+x̂+ŷ + ñi−x̂

+ ñi−x̂+ŷ� + H.c.� + s̃4
C�b̃i

†b̃i+x̂�ñi+ŷñi+x̂+ŷ + ñi−ŷñi+x̂−ŷ�

+ b̃i
†b̃i+ŷ�ñi+x̂ñi+x̂+ŷ + ñi−x̂ñi−x̂+ŷ� + H.c.�

+ s̃5
C�b̃i

†b̃i+x̂�ñi−x̂ + ñi+2x̂� + b̃i
†b̃i+ŷ�ñi−ŷ + ñi+2ŷ� + H.c.�

+ s̃6
C�b̃i

†ñi+x̂ñi+ŷb̃i+x̂+ŷ + b̃i
†ñi+x̂ñi−ŷb̃i+x̂−ŷ + H.c.� , �B4�

and, finally, hoppings simultaneously involving two-bosons

R̃i = r̃1
C�b̃i

†b̃i+x̂
† b̃i+ŷb̃i+x̂+ŷ + b̃i

†b̃i+ŷ
† b̃i+x̂b̃i+x̂+ŷ + H.c.�

+ r̃2
C�b̃i

†b̃i+x̂b̃i+ŷb̃i+x̂+ŷ
† + b̃i

†b̃i+x̂b̃i−ŷb̃i+x̂−ŷ
† + H.c.� .

�B5�

APPENDIX C: MEAN-FIELD PROCEDURE

Following the Matsubara-Matsuda semiclassical
approach,52 we write the hard-core boson effective models in
terms of S=1 /2 pseudospin variables. We start by replacing
the commutation relations for bosons on the same site i,

�bi,bi� = �bi
†,bi

†� = 0 and �bi,bi
†� = 1, �C1�

by the fermionic anticommutation relations

	bi,bi
 = 	bi
†,bi

†
 = 0 and 	bi,bi
†
 = 1, �C2�

while retaining the canonical bosonic commutators for op-
erators on different sites i,j. This leads to an algebra formally
equivalent to that of a spin 1/2.

We then neglect quantum fluctuations by replacing the
pseudospin operators by their mean value, obtaining a
Hamiltonian in terms of classical spin variables S
= �cos � sin � , sin � sin � , cos �� which reads

(a)

(b)

(c)

FIG. 10. �Color online� �=3.3, J /J�=0.29 and h=2. Mean-
field ground-state energy per site, E0, for “partial” effective models
comprising the following terms �see Eq. �9�; values for the effective

couplings are shown in Table I�: �a� 
̃C, Ṽ1
C, t̃1

C, s̃1
C and s̃2

C, leading

to a superfluid phase. �b� 
̃C, Ṽ1
C, Ṽ2

C, Ṽ3
C and t̃1

C, leading to a CBS
phase. �c� The minimal model from Eqs. �9� and �10�, for which a
spin-supersolid phase is obtained �cf. Fig. 7�b��.
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HMF = heff�
i

Si
z + �

�i,j�
�J̃ij

z Si
zSj

z + J̃ij
��Si

xSj
x + Si

ySj
y��

+ �
�i,j,k�

�K̃ijk
� Si

z�Sj
xSk

x + Sj
ySk

y� + K̃ijk
z Si

zSj
zSk

z�

+ �
�i,j,k,l�

�L̃ijkl
� Si

zSj
z�Sk

xSl
x + Sk

ySl
y� + L̃ijkl

z Si
zSj

zSk
zSl

z�

+ �
�i,j,k,l�

�M̃ijkl
� �Si

+Sj
−Sk

+Sl
− + H.c.�� . �C3�

The parameters heff �one-body�, J̃ �two-body�, K̃ �three-

body�, L̃ �four-body� and M̃ �double exchange� are defined in
terms of the couplings in the effective bosonic Hamiltonian.
The superscript z ��� accounts for interactions �hoppings�
between sites coupled as in the bosonic Hamiltonian.

In accounting for the different phases of the Hamiltonian
Eq. �1� it suffices to consider a site-factorized wave-function
���=�i��i� assuming two-sublattice long-range order �i
=A ,B�. The variational parameters ��A, �B, �A, and �B� are
determined by minimizing the ground-state energy per site
within this subspace. The condensate density43 corresponds
in a MF approach to the magnetization in the xy plane

�0 =
1

8
�sin2 �A + sin2 �B� , �C4�

and the CBS structure factor is

S��,�� = �cos �A − cos �B�2/4. �C5�

In terms of the density of singlets in the sublattice A, given
by

nA =
1 + cos �A

2
, �C6�

with a similar definition for the sublattice B �nB�, the ground-
state energy per site E0 �up to a constant� for the minimal
model of Eqs. �9� and �10� is

E0 = 2Ṽ1
CnAnB �C7�

+ �Ṽ2
C + Ṽ3

C��nA
2 + nB

2� �C8�

+ 4t̃1
C
nA�1 − nA�
nB�1 − nB�cos��A − �B� �C9�

+ 2�s̃2
C + 2s̃1

C�nAnB�2 − nB − nA� �C10�

+ �h − 
�
nA + nB

2
. �C11�

We can therefore deduce the following trends:
�i� The kinetic term associated to the NN hopping ampli-

tude t̃1
C, Eq. �C9�, favors a SF phase, since it is minimized for

nA=nB and �A−�B=�. Thus, there is no symmetry breaking
between A and B sublattices and the latter relation introduces
order in the xy plane, a condensate within the present semi-
classical treatment. This trend is illustrated in Fig. 10�a�,
where the ground-state energy per site E0 is plotted as a
function of the densities nA and nB for a “partial” effective
model comprising the following terms �see Sec. V A�: 
̃C,

Ṽ1
C, t̃1

C, s̃1
C, and s̃2

C.

�ii� Effective singlet interactions, Ṽ1
C, Ṽ2

C, and Ṽ3
C, favor a

CBS phase and their contribution to the ground-state energy
�Eqs. �C7� and �C8�� is minimized if the A−B symmetry is
broken. This is shown in Fig. 10�b�, where the following

effective couplings were considered: 
̃C, Ṽ1
C, Ṽ2

C, Ṽ3
C, and t̃1

C.
�iii� A compromise between the two previous trends �su-

persolidity� is achieved by including the correlated hopping
terms with amplitudes s̃1

C and s̃2
C �Eq. �C10��. While if con-

sidered separately this purely kinetic contribution does not
break the translational symmetry and only favors the SF
phase, adding it to a configuration already leading to a CBS
may stabilize a supersolid, as shown in Fig. 10�c� for the
minimal model from Eqs. �9� and �10�: the A−B symmetry is
broken concomitantly with ordering in the xy plane ��A
−�B=��.

For the sake of completeness, we now analyze the NN
correlated hoppings with amplitudes s̃3

C and s̃5
C, employed in

defining t̃1
min �Eq. �10�� and that cannot be investigated by

means of QMC simulations. Their contribution to the MF
ground-state energy reads

+ 4�s̃3
C + 2s̃5

C�
nAnB�1 − nB��1 − nA� · �nA + nB�cos��A − �B� .

�C12�

If considered alone, this term is minimized for �A=�B and
there is no breaking of the A−B symmetry. However, if �A
−�B=�, as imposed by the much larger contribution due to
the uncorrelated NN hopping t̃1

C �Eq. �C9��, Eq. �C12� favors
supersolidity and A−B symmetry is broken even if interac-
tions are not taken into account �within our MF approach�.
This is to be contrasted with the case of the longer-range
correlated hoppings s̃1

C and s̃2
C �Eq. �C10��.
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